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Abstract.  A new approach, that accounts for demagnetization, is described for calculating
the flux front boundary within the Bean critical state model for a tape geometry.  The
method combines an analytical description in the form of an integral equation for the flux
front boundary with a numerical method of resolving that equation. Results are given for a
source coi above the tape and measuring coils above and below .

1. Introduction

Quantitative determination of the local low field critical current density, Jc(H=0), in a

noncontacting manner is useful in the fabrication of high temperature superconducting (HTS) tapes
as a nondestructive evaluation (NDE) probe of processing parameters and spatial uniformity.
Transport critical currents are most often measured by contact 4-point probes; however,
noncontacting magnetic measurements are desired in many practical situations for their speed and
ease of use. The magnetic approach consists of measuring the induced currents in the sample with
small source/pickup probe coils that spatially scan over the tape surface [1,2].  Subsequently, the
Bean critical state model is relied on to determine Jc from the measured magnetic hysterisis. This

approach provides a measure of the critical current density since the intergrain critical current
density is usually much smaller than that for intragrain.

Usually, the Bean model is used in a context which ignores sample geometry effects,
referred to as demagnetization, due to the intractibility of the calculations required. Plate
geometries present the most severe demagnetization effects for external fields directed
perpendicularly to the surface. Certain geometries, such as a cylindrically symmetric sample in a
uniform field, can be treated by numerical methods [3].  Another approach treats the plate by
averging the current distribution over the thickness of the plate and thereby obtains an analytical
solution [4].
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A new approach is described that combines an analytical description of the problem in the
form of an integral equation for the flux front boundary with a numerical method of resolving that
equation [5]. This method is applicable in cylindrically symmetric geometries for both the external
field and the sample. It can be used to determine the critical state region profile including the
effects of demagnetization. The integral equation method has been applied to a sphere in a uniform
external field [5] and a plate in a cylindrically normal field [6,7]  This paper describes resaults
from the integral equation method for the plate geometry along with experimental measurements
on silver clad Pb-BSSCO (2223) tapes.  Results are presented for a measuring coil parallel to the
source coil above and below the tape for a given local critical current density Jc

2. Calculation of the Flux Front Surface

The source coil above the tape generates a flux front that penetrates into the tape.  Eventually, at
high excitation currents, this front penetrates completely through the tape and splits into two fronts
as shown in figure 1.  The approach taken is to calculate the location of the flux fronts based on the
shielding ability of the screening currents to produce a region of zero magnetic field below the
front.  This idea leads to an integral equation for the font location that can be solved by a numerical
iteration scheme [8].  The details of the method of solution have been presented elsewhere [4,5];
calculation results and measurements are described here. Exploiting cylindrical symmetry, an
integral equation can be written for the flux front, an integral equation can be written to determine
the flux front profile as follows:
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where 
),;,(0 ZRZRa ′′φµ
 is the vector potential at (R,Z)  due to a unit current coaxial loop of radius

R’ at height Z’.  The coil radius is rc, Jc the local critcal current density and I the
source coil current. This integral equation can be resolved for the flux front derivative knowing the
flux front profile for some initial value of the external field.  Since the starting flux front profile for
zero external field is just the sample surface, equation 1 provides an incremental numerical scheme
for determining the the profile for any external field [5-7].  When the external field becomes large
enough for the flux front to reach the bottom plate surface, the front breaks up into two separate
profiles.  Continuation of the method results in a pair of integral equations that are resolved
simultaneously by the same algorithm as with the single profile [6,7].

Once the flux front location is known, the total vector potential, and measured signal can be
determined for a pickup coil in any position.  Figure 2 shows the signals predicted for pickup coils
above and below the plate, where the external field is subtracted off above (balanced) and included
below (unbalanced).  Particularly, the pickup signal below the tape reflects the screening brought
about by currents flowing at less than the local critical current density and forms a good indicator
of local tape condition.  The curves of figure 2 are obtained by incresing the external field starting
from  the zero field cooled state.  Complete hysteresis loops, for cycles of the external field, can be
obtained for each pickup coil position and are shown in figures 3 & 4.  Significantly different
hysteresis loops are found for the top and bottom coils due to the screening currents in the tape.
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Figure 1. Calculated flux fronts penetrating a tape
of thickness D generated by a source coil above.
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Figure 2. Calculated pickup signal amplitudes for a top balanced pickup coil and a bottom
unbalanced pickup coil.
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Figure 3  Hysteresis loops at the top balanced pickup coil for several maximum external field
values
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Figure 4  Hysteresis loops at the bottom unbalanced pickup coil for several maximum external
field values.

Using the prescription of the Bean critical state, the complete hysteresis response is calculated from
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shown in figure 2.  In general β  is a function of time; however, only the quasi-stationary states of
the critical state are dealt with in this paper.  The time scale for changes in the external field is
typically very much longer than that exhibited by flux line motion, so the model always assumes a
sequence of stationary states uniquely defined by the history and present value of the external

field.Therefore, if the time dependence of β  is given, the resultant time dependence of both
pickup coil signals can be calculated.  Figure 5 illustrates this result for the case of a triangular
external field time dependence and the maximum values given in figures 3&4.  Again, most og the
significant changes in the signal waveforms occur for the bottom coil as the flux front penetrates



the plate thickness.  Harmonic analysis of these signals could lead to a simple method for
monitoring the local critical current density through waveform processing.

3. Experimental Measurements

The measurement geometry consisted of a single layer superconductor plate deposited between two
outside silver layers.  Tape samples of Pb-BiSrCaCuO (2223 phase) produced by the powder-in-
tube method [2,9] were measured with a small probe source coil (13 turns of #36 copper wire,
1 mm inside diameter). Balanced opposing pickup coils (5 turns each of #36) were wound over the
source coil, producing a small source/pickup probe that could be scanned over the sample surface.
An additional pickup coil (5 turns #36 copper wire on 1 mm diameter) was positioned below the
tape sample. Lift-off distances for both top and bottom coils were about 0.7 mm. Results are
presented below for one measurement position on the tape.

Figure 6 shows the measured results from the top balanced coil at one position on the tape for three
different temperatures. These results, which are qualitatively similar to the theoretical results of
figure 2, represent the magnetization due only to the induced screening currents within the flux
front. No single obvious point signifies the full flux penetration value with which the critical
current density can be determined.  The results from the bottom coil are significantly different. The
shielding effect is nearly complete when the external field is insufficient to cause full plate
penetration as shown in figure 7.  The shielding effect is clearly visible and, by extrapolation, a
unique point corresponding to full plate penetration can be estimated. The local critical current

density can then be determined from the corresponding value of β

Conclusions

A method has been outlined for calculating the flux front profile for a superconducting sample in
either a uniform or nonuniform applied magnetic field possessing azimuthal symmetry. This
technique relies upon finding a surface with zero vector potential. This surface is determined by
simple integration of its derivative with respect to the external field, found by resolving a linear
integral equation of the first kind. Measurement induced voltages and the entire hysteresis loop
response can be found by extension of the ZFC magnetization response with changing external
field. Other experimentally measured quantities relating to the critical state can be calculated
directly from the hysteresis loop if the time dependence of the external field is known.
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Figure 6  Top balanced coil measured signal amplitudes for different temperatures.
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Figure 7  Bottom coil measured signal amplitudes for different temperatures.
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